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 28 

Abstract 29 

Source apportionment of organic carbon (OC) and elemental carbon (EC) from 30 

PM1 (particulate matter with a diameter equal to or smaller than 1 µm) in Beijing, 31 

China was carried out using radiocarbon (14C) measurement. Despite a dominant 32 

fossil-fuel contribution to EC due to large emissions from traffic and coal combustion, 33 

non-fossil sources are dominant contributors of OC in Beijing throughout the year 34 

except during the winter. Primary emission was the most important contributor to 35 

fossil-fuel derived OC for all seasons. A clear seasonal trend was found for 36 

biomass-burning contribution to OC with the highest in autumn and spring, followed 37 

by winter and summer. 14C results were also integrated with those from positive 38 

matrix factorization (PMF) of organic aerosols from aerosol mass spectrometer (AMS) 39 

measurements during winter and spring. The results suggest that the fossil-derived 40 
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primary OC was dominated by coal combustion emissions whereas secondary OC 41 

was mostly from fossil-fuel emissions. Taken together with previous 14C studies in 42 

Asia, Europe and USA, a ubiquity and dominance of non-fossil contribution to OC 43 

aerosols is identified not only in rural/background/remote regions but also in urban 44 

regions, which may be explained by cooking contributions, regional transportation or 45 

local emissions of seasonal-dependent biomass burning emission. In addition, 46 

biogenic and biomass burning derived SOA may be further enhanced by un-resolved 47 

atmospheric processes.   48 

 49 
TOC 50 
 51 
  52 

6.2 µg m
-3

  17.4 µg m
-3
 

  Total carbon in PM1  
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1 Introduction 53 

Carbonaceous aerosols, which can contribute 20-90% of the total fine aerosol 54 

mass concentrations 1, 2 are of great importance due to their significant and complex 55 

impacts on air quality, human health and climate 3-5. According to different physical 56 

and chemical properties, bulk carbonaceous aerosols (total carbon, TC) are 57 

operationally divided into two sub-fractions namely organic carbon (OC) and 58 

elemental carbon (EC) or black carbon (BC) when carbonate carbon (CC) may be 59 

negligible or less than 5% of the TC mass in fine (i.e. PM2.5, particulate matter with a 60 

diameter equal to or smaller than 2.5 µm) or sub-micron particulate matter (PM1) 6. 61 

PM1 may be more important to human health compared to PM2.5 because smaller 62 

particles may have higher ability to penetrate into the human respiratory system 7. OC 63 

can scatter or reflect solar light leading to a net cooling effect on the Earth’ climate, 64 

whereas EC can significantly contribute to global warming due to its light absorbing 65 

behavior 5. OC and EC not only differ in their chemical and environmental effects but 66 

also differ in their origins and formation 6, 8. OC can be emitted as primary OC (POC) 67 

and formed as secondary OC (SOC) through gas-to-particle conversion after 68 

gas-phase oxidation of volatile organic precursors or aqueous-phase processing of 69 

low-molecular-weight water-soluble organic compounds 6, 8-10. EC almost exclusively 70 

originates from incomplete combustion either from fossil-fuel combustion or biomass 71 

burning 11. POC and its precursors can be emitted from fossil (e.g., coal combustion 72 

and vehicle exhaust) and non-fossil sources (e.g., biomass burning, vegetation 73 

emissions, cooking) 8, 12-14. Several studies have revealed that OC and EC differ in 74 
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their origins and formation processes based on bottom-up and top-down approaches 75 

15-18, and it is therefore very challenging to quantitatively determine contributions 76 

from different sources to OC and EC separately, especially in polluted urban regions.  77 

Beijing, the capital of China, is one of largest megacities in the world with a 78 

population of 20 million over an area of 16 800 km2 and it has faced serious air 79 

pollution problems for the last decades. Zheng et al. (2015) found that PM2.5 is 80 

associated with an average total mortality of 5100 individuals per year for the period 81 

2001–2012 in Beijing, and their results underscored the urgent need for air pollution 82 

abatement in Beijing or similar polluted megacities and city clusters 19. Extensive 83 

studies have been conducted in recent years to characterize severe haze pollution 20-22. 84 

However, most of them were focused on pollution episodes, an individual season or 85 

specific seasons for comparisons (e.g., summer vs. winter; heating vs. non-heating 86 

season).  87 

Recent studies have shown that radiocarbon (14C) measurements can 88 

unambiguously determine fossil and non-fossil sources of carbonaceous particles, 89 

because 14C is completely depleted in fossil-fuel emissions due to its age (half-life 90 

5730 years), whereas non-fossil carbon sources (e.g. biomass burning, cooking or 91 

biogenic emissions) show a contemporary 14C content 23, 24. Moreover, a better 92 

14C-based source apportionment can be obtained when 14C determinations are 93 

performed on OC, EC and water-soluble OC 23, 25-28. Biomass burning, coal 94 

combustion, vehicle emission, cooking, and the secondary formation from 95 

anthropogenic and biogenic precursors have been identified as important sources of 96 
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fine particle in Beijing 21, 29-35. Recent applications of the positive matrix factorization 97 

(PMF) algorithm with aerosol mass spectrometer measurement (AMS-PMF) from 98 

field campaigns have revealed a predominance of oxygenated organic aerosol (OOA) 99 

over hydrocarbon-like OA (HOA) in various atmospheric environments, although 100 

their fossil/non-fossil sources still remain relatively unknown 2, 34-37.  101 

It should be noted that most of these aerosol mass spectrometer studies have been 102 

conducted for PM1. A full yearly variation of relative fossil and non-fossil 103 

contribution of different carbonaceous aerosols in PM1 in Beijing is urgently needed. 104 

To the best of our knowledge, this study is the first time that 14C-based source 105 

apportionment of PM1 is simultaneously carried out in different carbonaceous 106 

fractions during four seasons in Beijing to attain a comprehensive picture of the source 107 

and formation information of carbonaceous aerosols. In addition, 14C results were also 108 

combined with AMS-PMF results to quantify the fossil and non-fossil contributions to 109 

oxygenated organic carbon (OOC, a surrogate for SOC) and assess contributions to 110 

POC from different sources (cooking, biomass burning, coal combustion, 111 

hydrocarbon-like OC). Finally, the dataset is also complemented by previous 112 

14C-based source apportionment studies conducted in urban, rural and remote regions 113 

in the Northern Hemisphere to gain an overall picture of the sources of OC aerosols. 114 

2 Experimental 115 

2.1 Sampling 116 

PM1 samples were collected on the rooftop of a two-floor building (8 m a.g.l.) 117 
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located at the State Key Laboratory of Atmospheric Boundary Layer Physics and 118 

Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese 119 

Academy of Sciences in Beijing, China. The samples were collected onto pre-baked 120 

quartz fibre filters (Pallflex) by a gravimetric volume sampler (Zambelli, Italy) at a 121 

flow rate of 38.7 L min-1 for around three days for each sample from 28 July 2013 to 122 

21 April 2014. For each season, 10-15 samples were collected. Blank was collected 123 

during each season with the pump off during the sampling. The filters were previously 124 

enveloped with aluminum foils and then baked at 450 °C for 6 hours before sampling. 125 

After sampling, each filter was packed separately stored in a refrigerator under –20°C 126 

until the analysis. 127 

2.2 Thermal-optical carbon analysis  128 

OC and EC mass concentrations were measured by the NIOSH thermal-optical 129 

transmission (TOT) protocol 38. The replicate analysis of samples (every 10 samples) 130 

showed a good analytical precision with relative standard deviations of 5.2%, 9.5%, 131 

and 5.2% for OC, EC and TC, respectively. The average field blank of OC was 132 

1.9±1.0 µg/cm2 (n=4, equivalent to ~0.3±0.15 µg/m3), which was subtracted from the 133 

measured OC concentrations. A corresponding EC blank was not detectable.  134 

2.3 14C analysis of the carbonaceous fractions 135 

One to three sequent filter samples were pooled together for 14C measurement. 136 

The method of 14C measurement of carbonaceous aerosols was described elsewhere 13, 137 

39, 40. In short, 14C of TC was analyzed by coupling of an elemental analyzer (EA) 138 
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with a MIni CArbon Dating System (MICADAS) at the University of Bern, 139 

Switzerland 41, 42. 14C analysis of EC was carried out by online coupling the 140 

MICADAS with a Sunset Lab OC/EC analyzer 43 where CO2 evolved from the EC 141 

peak is separated after OC was combusted from the filter sample (1.5 cm2) by TOT 142 

Swiss_4S protocol 39. Two samples with relatively high concentrations for each 143 

season were selected for 14C measurements of water-soluble OC (WSOC). The mass 144 

and fM values of WSOC were deduced from subtraction of OC and water-insoluble 145 

OC (WIOC) based on mass and isotope-mass balancing. 14C measurement of WIOC 146 

was measured under the same conditions as OC after water extraction of the filter 26.  147 

14C results were expressed as fractions of modern (fM), i.e., the fraction of the 148 

14C/12C ratio of the sample related to that of the reference year 1950 44. fM(EC) for 149 

each sample was further corrected by EC loss (20±8% on average) during the OC 150 

removal steps and possibly positive EC artifact from OC charring (10±6% of EC on 151 

average) similar to previous analyses 39, 45. fM(TC) was corrected for field blanks. The 152 

mean uncertainties of fM(EC) and fM(TC) were 5% and 2%, respectively. 14C results in 153 

OC (fM(OC)) were then calculated indirectly according to an isotope mass balance 40: 154 

f"#OC& =
TC × f"#TC& − EC × f"#EC&

TC − EC 											 

The uncertainty of fM(OC) estimated by this approach is on average 8% obtained from 155 

an error propagation and includes all the individual uncertainties of fM(TC) (2%), 156 

fM(EC) (5%), TC (8%) and EC (25%).  157 

Non-fossil fractions of OC and EC (i.e., fNF(OC) and fNF(EC), respectively) 158 

were determined from the fM values and reference values for pure non-fossil sources: 159 
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fNF=fM(sample)/fM(REF). The estimation of reference values (fM(REF)) have been 160 

previously reported in details 26, 39, 46. fM(REF) values amount to 1.07±0.04 and 161 

1.10±0.05 for OC and EC, respectively by a tree-growth model with a long term 162 

14CO2 measurement 47 and by assuming that biomass burning contribution to 163 

non-fossil OC and EC is 50±25% and 100%, respectively. It should be noted that the 164 

uncertainties of references values of fNF(ref) were relatively small compared to 165 

uncertainties from overall source-apportionment calculation. Uncertainties were 166 

determined by error propagation of all individual uncertainties including OC and EC 167 

mass concentrations, 14C results of OC and EC, fM(REF) as well as corrections for 168 

field blanks, EC recovery and charring. The overall average uncertainties of fNF were 169 

estimated as 5% (i.e., ranging from 3% to 7%) for OC and 8% (4% to 12%) for EC. 170 

Indeed, blank corrections and EC yield corrections are the most important 171 

contributors to the total uncertainties of OC and EC, respectively. 172 

2.4 HR-ToF-AMS operation and PMF 173 

An Aerodyne High-resolution Time-of-Flight Aerosol Mass Spectrometer 174 

(HR-ToF-AMS) was deployed at the same location for real-time measurements of 175 

non-refractory submicron species, including organic aerosols, sulfate, nitrate, 176 

ammonium, and chloride in spring (8–28 March, 2014) and winter (17 December 177 

2013 to 17 January, 2014). The detailed setup and operations of the HR-ToF-AMS is 178 

given elsewhere 22. The high-resolution mass spectra were then analyzed to determine 179 

the elemental ratios of OA, e.g., organic-mass to organic-carbon (OM/OC) and 180 

oxygen-to-carbon (O/C), using the Improved-Ambient method 48, and OC mass was 181 
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calculated as [OA]/[OM/OC]. Positive matrix factorization (PMF) was performed to 182 

high-resolution OA spectra to resolve potential source factors in spring and winter. 183 

After careful evaluations of the mass spectral profiles and times series following the 184 

procedures described elsewhere 49, six factor solution was chosen for both spring and 185 

winter studies, which included a hydrocarbon-like OA (HOA), cooking OA (COA), 186 

biomass burning OA (BBOA), coal combustion OA (CCOA), and two oxygenated OA 187 

factors, i.e., less oxidized OOA (LO-OOA) and more oxidized OOA (MO-OOA). The 188 

OC mass for each factor such as hydrocarbon-like OC (HOC), cooking OC (COC), 189 

biomass burning OC (BBOC), coal combustion OC (CCOC), and oxidized OOA 190 

(OOC) was calculated by dividing the corresponding OM/OC ratio. A more detailed 191 

PMF analysis and data interpretation has been given 22.   192 

2.5 14C-based source apportionment model 193 

An advanced 14C-based source apportionment model was used to quantify OC 194 

and EC from each source, which was achieved by the Latin-Hypercube Sampling 195 

(LHS) simulations using the dataset from mass concentrations of OC and EC, 196 

estimated primary emission ratios for fossil fuel and biomass burning as well as 14C 197 

results (termed as the 14C-LHS method) 40. In total, four major sources were resolved 198 

including EC from fossil and non-fossil sources (ECFF and ECNF, receptively), OC 199 

from fossil and non-fossil sources (OCFF and OCNF, receptively). OCFF and OCNF 200 

were further apportioned into sub-fractions of fossil-fuel OC from primary (POCFF) 201 

and secondary organic carbon (SOCFF) and non-fossil OC from primary 202 

biomass-burning sources (POCBB) and other non-fossil (ONF) sources (e.g. cooking 203 

Page 10 of 37

ACS Paragon Plus Environment

Environmental Science & Technology



and primary/secondary non-fossil OC, OCONF). The equations for the detailed source 204 

apportionment are shown in Table 1. Central (median) values with low and high limits 205 

were used as input parameters, and all solutions were included in frequency 206 

distributions of possible solutions except those producing negative values.  207 

The median values of (EC/POC)BB amounted to 0.3 with a range from 0.1 (low 208 

limit) to 0.5 (high limit), according to composed emission ratios in previous literatures 209 

1, 40, 50. The (EC/POC)FF values were calculated as (EC/POC)FF = ECFF/(HOC+CCOC). 210 

Individual HOC and CCOC values were obtained from the AMS-PMF method (see 211 

Sec. 2.4). For the samples without AMS-PMF data, a seasonal mean of (EC/POC)FF 212 

associated with an uncertainty of 30% was used, which amounted to 0.69 (0.48-0.89) 213 

and 1.25 (0.87-1.62) for wintertime and springtime samples, respectively. For samples 214 

collected during the autumn, (EC/POC)FF was assumed to be equal to that in spring. 215 

In summer, due to decreased contribution from coal combustion to fossil-fuel 216 

emissions as previously reported in Beijing 51, a higher (EC/POC)FF of 1.9 (1.3-2.5) 217 

was used. This was slightly smaller than EC/OC emission ratios (2.1) from vehicle 218 

emission used in our previous study, which were taken from the tunnel experiments in 219 

Europe (Gelencsér et al., 2007) and China 52, 53. The uncertainties and sensitivity test 220 

of source apportionment results were carried out by the LHS methodology by 221 

generating 10000 sets of inputs used in calculations (see Table 1) 40. Simulations with 222 

negative solutions were not included in final results and the 50th percentiles (or 223 

median) of the solution were considered as the best estimate, and the uncertainties 224 

were the 10th and 90th percentiles of the solutions. 225 
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3 Results and discussion 226 

3.1 OC and EC mass concentrations  227 

As shown in Figure 1, the annual average mass concentrations of OC and EC were 228 

10.1 µg m-3 (ranging from 1.9 to 33.8 µg m-3) and 3.8 µg m-3 (1.3 to 9.4 µg m-3), 229 

respectively. OC mass concentrations were less than those for PM2.5 samples in 230 

Beijing during 2000 (i.e., 21 µg m-3) and 2013/2014 (i.e., 14.0 ± 11.7 µg/m3) 33, 54, 231 

whereas EC values were comparable to those reported previously (i.e., 3 µg m-3) 33, 54. 232 

The relatively lower OC mass concentrations in PM1 than PM2.5 is likely due to 233 

substantial contribution to PM2.5 from larger particles such as dust and primary 234 

biogenic emissions 55. The annual concentrations of OC and EC in PM1 have been 235 

only reported in a few studies, and the concentrations in Beijing were significantly 236 

higher than those in Elche, Spain (i.e., OC: 3.7±1.3 µg m-3; EC: 1.5±0.6 µg m-3) 56, 237 

Brno, the Czech Republic (i.e., OC: 5.8 µg m-3; EC: 1.6 µg m-3) 57 and Taipei (i.e., 238 

OC:1.7 µg m-3; EC: 0.8µg m-3) 58 but lower than those  in Xi’an (i.e., OC: 21.0 µg 239 

m–3; EC: 5.1 µg m–3), China 59. The seasonal variations of OC and EC were 240 

characterized by the lowest mass concentrations in summer with a small standard 241 

derivation and the relatively higher values in other three seasons with much larger 242 

variations. As illustrated in Figure 1, both relatively high and low values in OC and 243 

EC concentrations could be occasionally observed in autumn, winter and spring 244 

although their average values were in the following order: winter=spring>autumn. It 245 

is very interesting to note that both OC and EC concentrations were very low during a 246 

long holiday season (30th Jan to 11th Feb 2014) for the Chinese Spring Festival, which 247 

was due to a large decrease in anthropogenic source emissions, e.g., traffic and 248 

cooking emissions. Such a “holiday effect” has been also reported in Beijing for 2013 249 
60. Similar lower organic aerosols and/or EC concentrations in summer than in the 250 

other seasons were also observed previously in Beijing, which was associated with 251 

relatively high wet scavenging effects and convection due to abundant precipitation 252 

and high temperature, respectively 34, 51. The overall higher concentrations of 253 

carbonaceous aerosols in other seasons were mainly due to combined and complex 254 
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effects such as increasing emissions from local and regional-transported coal and 255 

biomass/bio-fuel combustion and associated secondary formation as well as 256 

unfavorable metrological conditions for pollution dispersions. The relative fossil and 257 

non-fossil contributions to OC and EC will be discussed in the following sections.   258 

3.2 Fossil and non-fossil sources of OC and EC 259 

Carbonaceous aerosol was divided into the following four categories: OC from 260 

fossil and non-fossil sources, i.e., OCFF and OCNF, and EC from fossil and non-fossil 261 

(or biomass-burning) sources, i.e., ECFF and ECNF (i.e., ECNF = ECBB) (see Section 262 

2.5). Annual-average biomass -burning contribution to EC was 18±7% with a range of 263 

4% to 33%, suggesting a dominant contribution of fossil-fuel combustion to EC in 264 

Beijing rather than non-fossil sources. Fossil fraction in EC reported here was larger 265 

than those estimated by bottom-up inventories (i.e., 61±7%) in China 61. Such a high 266 

annual-average fossil fraction in EC is consistent with the results reported in Beijing 267 

(i.e., 79%± 6%), China 51, Jeju Island, Korea (i.e., 76 ± 11%) 13, and Ningbo, China 268 

(i.e., 77±15%) 27, but was remarkably higher than those found in South Asia such as 269 

Hanimaadhoo, Maldives (i.e., 47±9%) and Sinhagad, India (49±8%) 17 as well as a 270 

background site in South China (62±11%) 18 where local/regional biomass burning 271 

contribution was found to be more important than fossil fuel combustion. The 272 

biomass-burning fraction in EC was the lowest in summer (7%) and increased to 273 

around 20% during the rest of the year due to increased residential and/or open 274 

biomass-burning emissions, which was in line with a previous study for larger 275 

particles (e.g., PM4.3) in Beijing during 2010/2011. As shown Figure 2b, 276 

fossil-derived EC was a substantial contribution of TC in summer with a mean 277 
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contribution of 39±3%, significantly higher than those in autumn (23±5%), winter 278 

(19±2%) and spring (19±2%).   279 

Non-fossil contribution to OC ranged from 28% to 75% with a mean of 280 

52%±12%, which is exclusively larger than the corresponding contribution to EC 281 

(Figure 2a). This is due to relatively high contribution to OC from primary and 282 

secondary formation from non-fossil emissions such as biogenic, cooking and 283 

biomass-burning sources compared to EC. OC was dominated by non-fossil sources 284 

throughout the year except winter when a higher fossil-derived contribution for both 285 

absolute mass concentration (i.e., 8.0±5.2 µg m-3) and relative fraction (i.e., 59±6%) 286 

was observed. The highest fossil-derived OC in winter was associated with enhanced 287 

coal combustions for heating during the cold periods in North China 51, 55. 288 

Interestingly, fossil fraction in EC was not higher in winter than in autumn and spring, 289 

suggesting that source pattern was not changed significantly during these three 290 

seasons. 291 

However, the secondary formation from fossil-derived precursors may become 292 

more important and this would actually increase the fossil fraction in OC (see the next 293 

section). Indeed, the importance of SOC formation from fossil-fuel source has been 294 

previously identified in winter of Beijing and a downwind site of North China 13, 21, 40. 295 

In contrast to fossil-derived OC, mass concentrations and relative contributions of 296 

non-fossil OC were higher during autumn and spring, which was very likely due to 297 

enhanced biomass-burning. The lowest non-fossil OC was observed in summer, 298 

although secondary production from biogenic emissions should be higher in this 299 
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season with relatively high temperature and strong solar radiation 13, and the overall 300 

low mass concentration was likely due to strong atmospheric convection and 301 

dispersion as explained above. The seasonal trend of the TC sources was very similar 302 

to that of OC but with a relatively lower non-fossil contribution, suggesting that total 303 

carbonaceous aerosols are largely controlled by OC emissions and formation 304 

processes.  305 

3.3 Primary and secondary organic carbon  306 

OC contributions from POCBB, OCONF, POCFF, SOCFF sources are displayed in 307 

Figure 3. In order to present data variability, the best estimates (the median values) as 308 

well as 10th, 25th, 75th and 90th percentiles from the LHS simulations are also shown. 309 

On a yearly basis, the most important contributor of OC was OCONF, i.e., all other 310 

non-fossil sources (i.e., 33%±11% for OCONF) excluding primary biomass-burning 311 

OC (POCBB), mainly comprising primary and secondary biogenic OC as well as 312 

cooking OC. The highest OCONF contribution in summer was due to the increasing 313 

contributions from primary biogenic emissions and associated SOC formation with 314 

favorable atmospheric conditions (i.e., high temperature and solar radiation) as well as 315 

reduced emission for heating. OCONF contribution became lowest in winter because 316 

biogenic OC in sub-micron aerosols should be negligible or very small in the cold 317 

periods in North China. The mean OCONF contribution (22±9%) in winter may be 318 

used as a upper limit of cooking OC, which was comparable to results resolved from 319 

AMS-PMF (~20% for COC/OC in winter, see Figure 4) in our study and also cooking 320 

contribution to organic aerosols (19±4%) previously reported in Beijing 14. The 321 
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remaining OC was shared by fossil-derived POC (29±4%), primary biomass-burning 322 

OC (22±11%) and fossil-derived SOC (15±4%). For fossil-fuel derived OC, primary 323 

emissions dominated over secondary formation in almost all cases.  324 

A clear seasonal variation of biomass-burning source was observed with the 325 

highest contribution in autumn (27±13%) and spring (26±14%), followed by winter 326 

(19±10%) and summer (16±9%). The enhanced biomass-burning activities in autumn 327 

in Beijing and other areas in Northeast China have also been reported by 328 

measurements of biomass-burning markers such as levoglucosan and K+ as well as 329 

stable carbon isotopic composition, which can be attributed to agricultural waste 330 

and/or fallen leaves burning 62, 63. POCFF contributions were significantly higher in 331 

summer and winter. A large fraction of POCFF could be from vehicle emissions 332 

elucidated by a lower mean OCFF/ECFF ratio in summer (i.e., mean: 0.6; range: 0.5-0.7) 333 

compared to other seasons (i.e., mean: 1.70; range: 0.5-3.8). In winter, the 334 

enhancement was observed for both the POCFF (33±4%) and SOCFF (26±10%) 335 

contributions, associated with increasing emissions from coal combustion for heating. 336 

However, the SOC contribution in PM1 samples was obviously lower than those 337 

reported for a severe haze episode across East China in winter 2013 40, implying 338 

relatively larger SOC contribution to PM2.5 than PM1.  339 

To further investigate the relative contributions of biomass burning, cooking 340 

emissions and secondary formation to non-fossil OC, 14C-based source apportionment 341 

results were integrated with AMS-PMF results. Average mass concentrations of OC 342 

determined by filter-based OC/EC analyzer and on-line AMS methods (OC-AMS) are 343 
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shown in Figure 4. Due to analytical uncertainties in either method, a mean 344 

OC-AMS/OC-Sunset ratio was 1.1±0.2, and such a difference was also reported in 345 

other studies 37, 64. In the following, only relative contributions from each source to 346 

OC were compared to remove possible influences from differences in absolute 347 

concentrations (Figure 4). In spring and winter of Beijing, non-fossil OC was mostly 348 

derived from cooking and biomass-burning emissions. OOC, a proxy for secondary 349 

OC, comprised only a minor non-fossil fraction (15%). The results suggest that SOC 350 

was dominated by fossil fuel emissions in Beijing at least in these two seasons.  351 

It should be noted that BBOC resolved from the AMS-PMF approach was smaller 352 

than POCBB obtained from the 14C-LHS method. The difference between the 353 

AMS-PMF and 14C-LHS results can be explained by the uncertainties in both methods. 354 

Biomass-burning contribution may be underestimated by the AMS-PMF if aged 355 

BBOC was not included in the PMF model when biomass-burning OA was subject to 356 

substantial aging during regional transport. It may also be possible that POCBB was 357 

overestimated by the 14C method if a too low (EC/POC)BB was used in the LHS 358 

calculation, which was also reported during the DAURE campaign in Northeast Spain 359 

64. With a combination approach with 14C and AMS-PMF methods, coal combustion 360 

was estimated to account for 62% and 56% of fossil-derived POC in winter and spring, 361 

respectively, implying an overall importance of coal combustion to OC aerosol in 362 

Beijing. The biogenic/biomass-burning derived SOC (i.e., estimated as OOCNF) 363 

contributions accounted for 7% and 9% of OC in Beijing during winter and spring, 364 

respectively, demonstrating that OC was dominated by anthropogenic emissions 365 
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including biomass burning, cooking emissions as well as primary and secondary OC 366 

from fossil-fuel emissions. 367 

3.4 Fossil and non-fossil sources of WSOC and WIOC 368 

WSOC can be directly emitted as primary particles mainly from biomass burning or 369 

produced as secondary organic aerosol (SOA) 65-67. Ambient studies provide evidence 370 

that SOA produced through the oxidation of volatile organic compounds (VOCs) 371 

followed by gas-to-particle conversion contains more polar compounds and thus may 372 

be a more important source of WSOC 66-69 compared to primary organic aerosols. 373 

WSOC is therefore thought to be a good proxy of secondary organic carbon (SOC) in 374 

the absence of biomass burning 67. The average WSOC/OC ratio in our study was 375 

0.53±0.19 (ranging from 0.21 to 0.84). And WSOC/OC mass concentration ratio and 376 

non-fossil fraction of OC (i.e., fNF(OC)) show a very similar temporal variation 377 

(Figure 5) with a good correlation (r=0.60, p<0.05), indicating that non-fossil source 378 

was an important contributor of WSOC. To confirm this hypothesis, 14C measurement 379 

was also performed on sub-fractions of OC including WSOC and water-insoluble OC 380 

(WIOC) of two samples for each season. Based on these measurements, the WSOC 381 

concentrations from non-fossil sources (WSOCNF) ranged from 0.6 to 7.6 µg/m3, 382 

whereas the corresponding range for WSOC from fossil-fuel emissions (WSOCFF) 383 

was 0.5 to 11.6 µg/m3. Non-fossil sources were major if not dominate contributors of 384 

WSOC for nearly all studied samples with a mean contribution of 58%±9% (Figure 6). 385 

The only exception (i.e., fNF(WSOC)=0.39) was the aerosol sample collected from 386 

2013/12/2 to 2013/12/26 when the highest OC concentration during the whole 387 

sampling periods was observed. The highest fossil source contribution was also found 388 

for the WIOC fraction (i.e., fNF(WIOC)=0.31) for the same sample. These results 389 

showed that during this haze episode, fossil emission was the most important source 390 

of OC. WSOCNF can be further apportioned to WSOC from biomass burning (i.e., 391 

WSOCBB) and non-fossil SOC (i.e., WSOCNF,SOC): 392 

WSOCNF=WSOCNF,SOC+WSOCBB 393 
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WSOCBB=POCBB*(WSOC/OC)BB 394 

where POCBB was previously estimated (see Sec.3.3). SOC-to-OC emission ratios of 395 

biomass burning (i.e., (WSOC/OC)BB) is assigned as 0.8±0.2 (ranging from 0.6 to 1.0) 396 

in this study according to observations of different biomass types around the world 65, 397 
70. Therefore, primary biomass burning and non-fossil derived SOC accounted for 398 

62%±17% and 38%±17% of WSOCNF, respectively. This suggest that biomass 399 

burning was generally a major contributor of non-fossil WSOC in Beijing. 400 

Furthermore, WSOCFF was significantly correlated (r=0.94, p<0.01) with SOCFF (see 401 

Sec. 3.3), suggesting that an importance contribution of fossil-derived SOC to 402 

WSOCFF. On the yearly-basis, non-fossil contributions to WSOC were larger than 403 

those to WIOC (Figure 6), although most of the data is not statistically significant from 404 

the 1:1 line and some opposite cases were also found occasionally. Similar 405 

observations were published for other locations in Asia 71, Europe 26 and the USA 72, 406 

which is due to relatively high water solubility of major sources of WSOC such as 407 

biomass-burning OC and SOC that are composed of a large fraction of polar and 408 

highly oxygenated compounds 70, 73, 74.  409 

4 Implications 410 

Despite dominant fossil-fuel contribution to EC particles due to large emissions 411 

from traffic and coal combustion, our study demonstrates that non-fossil emissions are 412 

generally a dominant contributor of OC including WIOC and WSOC fractions in a 413 

heavily polluted megacity in China. Such an important non-fossil contribution to OC 414 

agrees with source information identified in OC aerosols obtained in the Northern 415 

Hemisphere at urban, rural, semi-urban, and background sites in Asia, Europe and 416 

USA (Figure 7). The 14C-based source apportionment database shows a mean 417 

non-fossil fraction of 68±13% across all sites (Figure 7). 14C results of EC/TC/WSOC 418 

were not compiled for the comparisons since these carbonaceous fractions cannot 419 
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fully represent OC aerosols. As discussed in the previous section, WSOC/OC ratios 420 

and non-fossil contribution of OC in Beijing have very similar temporal variations, 421 

indicating that biomass-burning emissions and biogenic-derived SOC formation were 422 

very important contributors of non-fossil OC. Indeed, WSOC/OC ratios may be also 423 

increased due to organic aerosol aging during regional and/or long-range transport, so 424 

it can be anticipated that the regional-transported non-fossil OC from rural sites to 425 

urban areas would also increase non-fossil OC fraction in urban regions. As shown in 426 

Figure 7, fossil contribution is apparently higher in the USA (i.e., with fossil 427 

contribution of 44±11%) and East Asia (i.e., 39±13%) than those observed in Europe 428 

(i.e., 25±9%). This may be because most 14C-based studies in the USA and East Asia 429 

have been conducted within, near and downwind of urban areas. Furthermore, wood 430 

burning emissions have recently become a more important contributor of European 431 

aerosols. This would be especially the case in winter, decreasing fossil contribution. 432 

This study shows that a combined approach of AMS-PMF and 14C methods 433 

provide more comprehensive picture of the source and formation information of 434 

carbonaceous aerosols than either method alone. Therefore, such approaches are 435 

recommended to be used as a routine basis in a long-term monitoring network (e.g. at 436 

supersites) for a better source apportionment. Our study also provides a direct 437 

evidence that non-fossil source plays a major role in organic aerosol concentrations 438 

not only in rural/remote areas but also in many polluted urban sites, which seems to 439 

be contrasting to the fact that fossil fuel emissions (e.g., coal combustion and vehicle 440 

exhaust) often dominate EC aerosols (i.e., an excellent marker for primary 441 
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carbonaceous aerosols) in urban areas. This unexpectedly high non-fossil contribution 442 

to OC in urban areas may be explained by urban non-fossil carbon emissions (e.g. 443 

cooking emissions and associated SOA), regional transported or locally 444 

season-dependent biomass burning emissions 75, 76, as well as 445 

biogenic/biomass-burning SOA linked with complex and combined atmospheric 446 

mechanisms such as enhancement by anthropogenic emissions 77.  447 
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Table 1. Equations for 14C-based source apportionment model. See Sec 2.5 for the 792 

details. 793 

 794 

Equations 

ECNF =fNF(EC) × EC 

ECFF=EC - ECNF 

OCNF=fNF(OC) × OC 

OCFF=OC - OCNF 

POCFF = ECFF / (EC/POC)FF 

SOCFF = OCFF - POCFF 

POCBB=ECNF / (EC/POC)BB 

OCONF = OCNF - POCBB 

OCAMS = OAAMS / (OM/OC)AMS 

 795 
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  796 

Figure 1. Temporal variations of OC and EC mass concentrations as well as 797 

OC/EC ratio of PM1 samples in Beijing. 798 
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Figure 2. (a) Temporal variations of non-fossil contribution to OC, EC and TC and (b) 804 

average source apportionment results of TC in each season  of PM1 samples in 805 

Beijing. The numbers below the pie chart represent the average TC concentrations for 806 

each season.  807 
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 810 

 811 

 812 

Figure 3. Fractions of each source (i.e., POCFF, SOCFF, POCBB, OCONF) in OC of 813 

PM1 samples in Beijing derived from the Latin-Hypercube Sampling (LHS) 814 

simulations for summer, autumn, winter, spring, and the annual-average (from left to 815 

right). The box denotes the 25th (lower line), 50th (middle line) and 75th (top line) 816 

percentiles; the empty squares within the box denote the mean values; the end of the 817 

vertical bars represents the 10th (below the box) and 90th (above the box) percentiles. 818 

POC: primary organic carbon, SOC: secondary organic carbon. FF: fossil fuel, NF: 819 

non-fossil, ONF: other non-fossil sources (details see the main text).  820 
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 821 
Figure 4. Average mass concentration measured by filter-based Sunset OC/EC 822 

analyzer method (OC-Sunset) and AMS method (OC-AMS) during winter (n=4) and 823 

spring (n=2) (top) and relative contributions to OC from different sources with a 824 

combination of 14C-LHS and AMS-PMF methods (bottom). OCFF: fossil-fuel derived 825 

OC; OCNF: non-fossil OC; CCOC: primary coal combustion OC; HOC: 826 

hydrocarbon-like OC; OOCFF: fossil-fuel oxygenated OC; OOCNF: non-fossil 827 

oxygenated OC; COC: primary cooking OC; BBOC: primary biomass burning OC. 828 
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 830 

Figure 5. Temporal variations of non-fossil contribution to OC and WSOC/OC ratio 831 

of PM1 samples in Beijing.   832 
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 833 

Figure 6. Relationship between fNF(WSOC) and fNF(WIOC).  834 
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 836 

Figure 7. Fossil and non-fossil sources of OC aerosols at different locations around 837 

world. The results are obtained from this study and previous 14C-source 838 

apportionment studies 1, 13, 18, 26-28, 40, 46, 71, 78-88. The map is created by MeteoInfo Java 839 

Edition 1.3 (http://www.meteothinker.com/). 840 
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