

第四届全国稳定同位素生态学学术研讨会 暨中国生态学学会稳定同位素生态专业委员会2017年学术年会

森林土壤气态氮损失

方运霆(沈阳生态所)

南京,2017年10月16-18日

- Annual denitrification rate at ecosystem levels
- Soil microbial N₂ production processes
- Effects of N deposition on soil N₂O and N₂ production from two tropical forests

- Happens everywhere;
- A process proposed to be a mechanism for N limitation in terrestrial and aquatic ecosystems.

 A basic and challenging question: how much N is lost via denitrification annually for a given ecosystem?

From Wallenstein et al., 2006. Ecological Applications

Approaches for denitrification rate at ecosystem levels

Approach	Disadvantages
Mass balance	Based on N inputs (from biological N fixation, N fertilization, N deposition) and assuming no soil retention. Not suitable for natural ecosystems.
¹⁵ N natural abundance for total dissolved N	Total gaseous N losses, both from denitrification and nitrification.
¹⁵ N natural abundance for bulk soil	Long-term total gaseous N loss.
N_2O/N_2 ratio	Used for large regional scale, ratio varied greatly from ecosystem to ecosystem.
Soil core gas flow+field O ₂ concentration	O ₂ is one of important controlling factors, not the sole factor.
Nitrate ¹⁵ N and ¹⁷ O natural abundance	Hydrological data, e.g., precipitation and water loss, nitrate isotope analysis.

Bulk soil ¹⁵N natural abundance

 δ^{15} N = ($R_{\text{sample}}/R_{\text{air}} - 1$) * 1000

 $R = {}^{15}N/{}^{14}N$

$$\delta^{15}N_{inputs} = -1.3\%$$

Assume: Plant N uptake and return have no influence on soil ^{15}N abundance ($\delta^{15}N_{soil}$)

 $\delta^{15}N_{\text{soil}} = \delta^{15}N_{\text{inputs}} + \varepsilon_{\text{H}} \cdot (H/(H+G)) + \varepsilon_{\text{G}} \cdot (G/(H+G))$

Houlton et al., 2006. PNAS; Houlton and Bai, 2009. PNAS; Bai et al., 2013. Biogeosciences

Bulk soil ¹⁵N natural abundance

O Houlton and Bai., 2009. PNAS

Gaseous N losses rate, acounting for one third of total N losses.

○ Koba, Fang*, et al., 2012. JGR.

Gaseous N loss rate was 10 kg N/ha.yr, accounting for 12% of total N losses. $N_2O + NO = 10$ kg N/ha.yr (4 + 6)

No N₂ production?

$$F_{IN} = F_A + F_N = F_U + F_D + F_L$$

Fang et al., 2015. PNAS

 $f_{\rm D} + f_{\rm U} + f_{\rm L} = (F_{\rm D} + F_{\rm U} + F_{\rm L}) / (F_{\rm A} + F_{\rm N}) = 1$ $\delta^{15} N_{\rm soilNO3-} = \delta^{15} N_{\rm NO3-input} + f_{\rm D} \times \varepsilon_{\rm D} + f_{\rm U} \times \varepsilon_{\rm U}$

 $\delta^{15}N$ of NO_3^{-1} in soil and stream water

IAE

N losses via denitrification and leaching

Unit: kg N/ha.yr

	JFL-P	JFL-S	DHS	OYS-O	OYS-M	ТМ
Denitrification	15.4	5.6	9.4	12.1	19.7	22.3
N ₂ O	1.5	3	4.7	0.1	0.1	0.7
N ₂ +NO	13.9	2.6	4.7	12	19.6	21.6

- Annual denitrification rate at ecosystem levels
- Soil microbial N₂ production processes
- Effects of N deposition on soil N₂O and N₂ production from two tropical forests

Microbial N₂ production processes

On-line and automatic analysis for ¹⁵N-N₂

	Conventional method	New method
Required amount of ¹⁵ N addition	80-300 mg ¹⁵ N/kg soil (only suitable for agricultural system)	0.1 mg ¹⁵ N/kg soil (suitable for forest)

Is anammox (anaerobic ammonium oxidation with nitrite) important in forest soil N₂ production?

- Important in marine system and river sediments, and considerable in some wetland and rice paddy soils.
- No report for forest soils, although forests cover 37% of the land.
- We expected that anammox exists in forest soils, due to the nature of coexistence of NH₄⁺ and NO₃⁻, oxic and anoxic conditions.

Qingyuan forest research station

Laboratory ¹⁵N labelling

4 g fresh soil to 20 mL vials Vacuum and flush with ultrapure N2 or air (Pre-incubated in dark at 21 °C overnight) Add ¹⁵NO₃⁻ or ¹⁵NH₄⁺ tracer solution (100 ug¹⁵N g fresh soil) Gas sampling after 24 hours for isotope analysis of N₂

Anammox ${}^{14}NH_4^+ + {}^{15}NO_3^- \rightarrow {}^{29}N_2$

Co-denitrification ¹⁵NO₃⁻ + ¹⁴N compounds (e.g., azide, ammonium NH₄⁺, salicylhydroxamic acid, and hydroxylamine \rightarrow ⁴⁵N₂O \rightarrow ²⁹N₂

Denitrification ${}^{15}NO_3^- + {}^{14}NO_3^- \rightarrow {}^{29}N_2^ {}^{15}NO_3^- + {}^{15}NO_3^- \rightarrow {}^{30}N_2^-$

 $\frac{\text{Fearmox}}{^{15}\text{NH}_4^+} \rightarrow {}^{30}\text{N}_2$

Heterotrophic nitrification no $^{29}\mathrm{N}_2$ or $^{30}\mathrm{N}_2$

- Denitrification is dominant process in N₂ production.
- N₂ production decreased with soil depth

	Contribution (%)				
Soil layer	Anammox	Co-D	Denitrification		
0-10 cm	1.1	5.0	93.9		
10-20 cm	2.5	1.8	95.7		
20-40 cm	6.6	12.4	81.0		

Dan, X. et al., 2016. Applied and Environmental Microbiology

Anammox bacteria

Functional *hzs*B gene is under detected limitation

0.05

- Annual denitrification rate at ecosystem levels
- Soil microbial N₂ production processes
- Effects of N deposition on soil N₂O and N₂ production from two tropical forests

Four treatments, control (no N addition), low-N addition (25 kg N ha⁻¹ yr⁻¹), medium-N addition (50 kg N ha⁻¹ yr⁻¹), and high-N addition (100 kg N ha⁻¹ yr⁻¹).

- Four replicate plots for each treatment
- Plot size: 20 m * 20 m
- Treatment, since 2010, monthly
- Sampling: three times in from 2016 to 2017

We expected that:

- 1) long-term N addition would increase soil N2O and N2 production, and increase N2O/N2 (due to further soil acidification induced by N addition);
- 2) N addition may have decreased denitrification contribution to N2O and N2 production, compared to other production processes.
- 3) N addition may have changed the gene abundance of genes associated with denitrification.
- 4) response to N addition would be more pronounced in the primary forest than in the secondary forest.

Laboratory C₂H₂ inhibition (AIT)

4 g fresh soil to 20 mL vials

Vacuum and flush with ultrapure N2 or air (Pre-incubated in dark at 21 °C overnight)

Add C2H2 (to inhibit N2O reduction) and nitrate (100 ug¹⁴N g fresh soil)

Gas sampling after 24 hours for concentration analysis of N_2O

4 g fresh soil to 20 mL vials Vacuum and flush with ultrapure N2 or air (Pre-incubated in dark at 21 °C overnight) Add ¹⁵NO₃⁻ tracer solution (100 ug¹⁵N g fresh soil) Gas sampling after 24 hours for isotope analysis of N₂ and N₂O

 Natural abundance of N and O isotopes in nitrate can be used to estimate denitrification rate at an ecosystem level for forests; denitrification is shown to be an overlooked N loss pathway.

- ¹⁵N labelling and ¹⁵N pairing technique is a novel and promising approach to quantify the importance of each of several microbial N processes responsible for N₂O and N₂ production and their responses to disturbance.
- Anammox existed but contributed little to N2 production.
- Response of N2 and N2O to long-term N addition is ecosystem specific in tropical forests.

Chinese forest ¹⁵N tracer network (8 sites, 11 forests)

DXAL

QY

MES

CBS

Objectives:

- retention;
- redistribution;
- controller

Qingyuan

Soil warming experiment in a temperate mixed forest 80 IA 75 **3 control** 70 65 plots; 3 warming **Objectives:** plots soil C and N cycling Plot: 6 m * soil biota 18 m plants 2°C above 20 5 20 control 15 from April 10 to 5 **November** 0 -5

50

45

55

60

65

70

75

80 m

30

20

25

35

40

-5

2016 pilot experiment

Thank you very much for your attention.

